Effects of elastase on the mechanical and failure properties of engineered elastin-rich matrices.

نویسندگان

  • Lauren D Black
  • Kelly K Brewer
  • Shirley M Morris
  • Barbara M Schreiber
  • Paul Toselli
  • Matthew A Nugent
  • Bela Suki
  • Phillip J Stone
چکیده

Pulmonary emphysema and vessel wall aneurysms are diseases characterized by elastolytic damage to elastin fibers that leads to mechanical failure. To model this, neonatal rat aortic smooth muscle cells were cultured, accumulating an extracellular matrix rich in elastin, and mechanical measurements were made before and during enzymatic digestion of elastin. Specifically, the cells in the cultures were killed with sodium azide, the cultures were lifted from the flask, cut into small strips, and fixed to a computer-controlled lever arm and a force transducer. The strips were subjected to a broadband displacement signal to study the dynamic mechanical properties of the samples. Also, quasi-static stress-strain curves were measured. The dynamic data were fit to a linear viscoelastic model to estimate the tissues' loss (G) and storage (H) modulus coefficients, which were evaluated before and during 30 min of elastase treatment, at which point a failure test was performed. G and H decreased significantly to 30% of their baseline values after 30 min. The failure stress of control samples was approximately 15 times higher than that of the digested samples. Understanding the structure-function relationship of elastin networks and the effects of elastolytic injury on their mechanical properties can lead to the elucidation of the mechanism of elastin fiber failure and evaluation of possible treatments to enhance repair in diseases involving elastolytic injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential effects of static and cyclic stretching during elastase digestion on the mechanical properties of extracellular matrices.

Enzyme activity plays an essential role in many physiological processes and diseases such as pulmonary emphysema. While the lung is constantly exposed to cyclic stretching, the effects of stretch on the mechanical properties of the extracellular matrix (ECM) during digestion have not been determined. We measured the mechanical and failure properties of elastin-rich ECM sheets loaded with static...

متن کامل

A zipper network model of the failure mechanics of extracellular matrices.

Mechanical failure of soft tissues is characteristic of life-threatening diseases, including capillary stress failure, pulmonary emphysema, and vessel wall aneurysms. Failure occurs when mechanical forces are sufficiently high to rupture the enzymatically weakened extracellular matrix (ECM). Elastin, an important structural ECM protein, is known to stretch beyond 200% strain before failing. How...

متن کامل

Prediction of Engineered Cementitious Composite Material Properties Using Artificial Neural Network

Cement-based composite materials like Engineered Cementitious Composites (ECCs) are applicable in the strengthening of structures because of the high tensile strength and strain. Proper mix proportion, which has the best mechanical properties, is so essential in ECC design material to use in structural components. In this paper, after finding the best mix proportion based on uniaxial tensile st...

متن کامل

I-6: Remodelling Uterine Spiral Arteries inPregnancy

Background: During the first trimester of pregnancy the uterine spiral arteries that supply blood to the placenta are remodelled, creating heavily dilated conduits lacking maternal vasomotor control. To effect permanent vasodilatation, the internal elastic lamina and medial elastic fibres must be degraded. Failure of remodelling is a key characteristic of the pathological placenta and is though...

متن کامل

Neonatal mice genetically modified to express the elastase inhibitor elafin are protected against the adverse effects of mechanical ventilation on lung growth.

Mechanical ventilation (MV) with O(2)-rich gas (MV-O(2)) offers life-saving treatment for newborn infants with respiratory failure, but it also can promote lung injury, which in neonates translates to defective alveolar formation and disordered lung elastin, a key determinant of lung growth and repair. Prior studies in preterm sheep and neonatal mice showed that MV-O(2) stimulated lung elastase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 98 4  شماره 

صفحات  -

تاریخ انتشار 2005